All That is Required: Systems Engineering of a UAV
Control Station Software Suite Using Enterprise Artitect
from Sparx Systems

Mike Meakin, B.Sc., PMP (Immeakin@telus.net)
Dave Weiler, B. Sc., M. Eng (dweiler@cdlsystems).com

During the period from September 2003 to Septer®@@4, a project was undertaken to
integrate the Hunter Unmanned Air Vehicle (UAV)drthe Vehicle Control Station (VCS)
software suite used by the US Army for its Tactibal/ (TUAV) program. Concurrent with
this technical requirement was a goal of movingamg a requirements process in line with
the Software Engineering Institute’s (SEI) CapapiMaturity Model Integrated (CMMI).
Therefore, as part of this project, an analysisvafious requirements tools and approaches
was undertaken with a determination that the expental use of Enterprise Architect (EA)
from Sparx Systems would be well worth evaluating.

An up-front examination of EA revealed several isicgmt problems with its inherent
capabilities from a requirements management petsgebut the open architecture of tool-
specifically its use of an Access database ansuipgort of Visual Basic for Applications
(VBA)- allowed paths forward for addressing theisertfalls to be readily identified. That,
along with several significant advantages offergdld over more traditional requirements
tools, was sufficiently convincing to justify usiag for the Hunter UAV integration project
for a more detailed and fully representative exaation of its suitability as a requirements
management tool.

This paper shall describe this effort, the varidessons learned, the perceived advantages of
using EA and the proposed path forward for usénisftiool within UAV control station
software development.

All That is Required: Systems Engineering of a UAV
Control Station Software Suite Using Enterprise Artitect
from Sparx Systems

Mike Meakin, B.Sc., PMP (Immeakin@telus.net)
Dave Weiler, B. Sc., M. Eng (dweiler@cdlsystems).com

Introduction

In 2003, a project was undertaken to integratéNsthrup-Grumman Hunter Unmanned Air
Vehicle (UAV) into the US Army One System groundtiin being designed for AAI
Corporation’s Shadow UAV. Although there were sa@igmificant hardware modifications
required to accept the Hunter ground componengsmijority of effort was modification of
the Vehicle Control Station (VCS) software from CBlstems to accommodate both
Shadow and Hunter.

The schedule targeted for this effort was less tranyear from initial requirements
discussions to the conclusion of integration. VWitlsh an aggressive schedule for integration
of a truly complex system, it was crucial that teguirements be defined, communicated and
managed in an accurate and efficient manner tadahei difficulties and risk associated with
rework resulting from poorly understood requirensent

As such, an initial task of the software developtredfort was to identify the best way of
managing requirements, based on previous experartéhe anticipated complexity of the
Hunter system.

A History of Approaches

In previous system integration projects within CBystems, a variety of requirements
management approaches had been used with varygngegeof success.

On smaller projects, use of a pre-defined User'sidd&had been used in the past. However,
this did not effectively capture non-user speaifiquirements such as performance criteria
and only poorly captured logical interactions. #siatherefore only manageable for small
projects with a great deal of verbal communicafrom the project manager to the
development and, even then, suffered from a la@kpficit traceability from requirements to
design to tests.

A few projects had attempted to utilize more explidefined requirements documents using
standard word processing packages. This oftendedueference to Interface Design
Document (IDDs) that were delivered by the custoamet described the protocol to be
implemented for the target system. Coupled todbisument-style approach to requirements
was a requirements review between the requirensggimeers and the software developers
that allowed the documents themselves to be plextedhe correct context from which the
developers can work. This approach, however,ssifflered from a lack of explicit

traceability through design and testing. This wisropartially addressed by using the IDD
itself as the template for test development, tmstigng that all parameters were addressed in
testing. While manual, this approach was foundegbite effective in ensuring that testing
was comprehensive but difficulties were encountanddter stages of the project when
substantive revisions of the ICD- in format onlgcarred, resulting in significant manual
effort to ensure that the tests were still compnshe of all parameters.

This approach was also found to be less than ssittekie to developers not referencing the
document directly, instead relying on a few reviekthe document and then working from
their understanding of the requirements rather fr@n the requirements themselves. This
led to several disconnects at the conclusion oéldgment, drawing attention to the fact that
the requirements themselves must be in a formataargiage that is suitable not only to the
requirements engineer and the customer but aldeetdeveloper who must do the
implementation.

Due to a customer requirement on a specific prpjaetrequirements tool DOORS had been
used and was available. This tool allows importabbrequirements directly from Word
documents and supports explicit traceability fraguirements to both test cases and test
results, so long as tests are performed withid@©RS environment. However, the license
cost of this tool is very high- especially for ashtompany- which leads to only the fewest
number of licenses being purchased, resultingmitéid accessibility to the requirements
across a large team. Being a requirements-spécdlcit also does not support traceability
into the design nor does it address the conceusiofy a format and language suitable to the
developers, especially given the steep learningecassociated with its use. The latter is a
problem also faced by the requirements engineenwitst learning to use DOORS.

A Potential Solution

Based on an examination of the history of requirgsienanagement within CDL Systems, it
was clear that none of the approaches taken thysdaided an ideal solution so an attempt
was made to prioritize the desired attributes qirements management tool and use a
trade-off analysis to identify the best tool thealtit within the Hunter effort to evaluate it
under real world conditions.

Since the primary goal of requirements analysie iminimize the amount of re-work
necessary in later stages, it is clear that it riurgttion as not only a communications
interface between the requirements engineer andustemer but also as a communications
interface between the requirements engineer andaweloper. Furthermore, since the
preferred means of documentation and/ or commuaicaff the customer cannot be
stipulated, it was recognized that the requirementgneer must always be prepared to
convert the customer requirements into whatevermatl format was decided upon therefore
the primary goal must be to ensure good commumwicdtetween the requirements engineer
and the developers. This meant that it must bediumewithin which the developer is either
already comfortable or that requires very littleogfin which to become comfortable and
proficient.

It was recognized, however, that an ability toaterthe requirements back to the customer
must be supported so some sort of standard docatr@ngeneration must be available. An
ability to import from standard documentation fotsnhat might be delivered by customers-
such as Word- would be highly desirable, thoughmeaiessarily a requirement.

Coupled to this communications requirement wasjairement of accessibility. In a
development team of 10-15 individuals, if too feeehses were available at any one time
then many of the developers may not have timelgsgto the requirements to which they are
working, thus hampering the communication thahesgrimary goal of the tool selection.

It was decided that the next most important cotervould be traceability from requirements
to test cases in order to ensure that all of tgairements could be verified as tested, thus
eliminating the risk of delivering software thategonot fulfill the system requirements. Two
highly desired- though not absolutely necessaiitera would be to also trace to both the
software design and/or the actual test results.

Finally, a very important requirement for continuadnagement of requirements was the
ability to baseline a set of requirements and ifieohanges between baselines. This is
important for easy and accurate identificationtwdreges needing to be made as the
requirements themselves are iterated through thesef a project.

Given that each of the approaches tried previooatl’had their respective flaws,
consideration was given to the use of the desighlteing used by the developers themselves,
Enterprise Architect (EA) from Sparx Systems. Ttbial- while developed and marketed as a
software design tool- had support for the creatibrequirements and test case objects with
different classifications and supporting text. Rethe design tool used by the developers
themselves, it was already a familiar medium, @ddressing the internal communications
requirement. EA has considerable documentationrgénon capabilities that allowed iteration
of the documented requirements back to the custéaneoncurrence. It supported

traceability not only from the requirements to test cases but also to the high level graphical
user interface (GUI) design to be implemented leydevelopers. The test case objects also
supported the recording of test results electrdiyicdnus allowing traceability through to test
results- as well as the sorting and filtering afdé results for document generation.

It was also felt that- along the lines of a pictbeeng worth a thousand words- a graphical
approach to requirements would be far more effeaticconveying the actual implementation
required than the traditional document based agpro#/ith full support for UML, EA

allowed not only the graphical display of intercentions and realizations but also made
available such tools as use case diagrams, seqd@&grams and state diagrams to better
capture for developers the specifics of the moragiex requirements.

The very low cost of EA was not an insignificanttfar since it meant that all personnel on
the project could have their own license, thus Bnglaccess to the requirement information
at any time. This also allowed personnel on tréwddeep a local copy of both EA and the
project database for reference when discussingsting requirements with the customer.

Several shortcomings of EA for this purpose weoegaized up-front, of which some were
actually addressed by Sparx Systems during theseafrthe project itself so that they were
no longer an issue by the end. An example of sditlgese would be the ability to select
multiple objects for dragging within the folder-i&yproject view when re-organizing and the
ability to denote different types of requiremenyscblour within the diagram views.

Custom Diagram: "SitvehicleRequirements’’ created: 1/30/2005 2:27:12 PM modified: 1/30/2005 2:25:41 PM 100% 799x 1043 » |Project View ax

= YL
Message0l E z;ﬁ':g:cu:n;\:l:ea' Deployment View -~
Eyi=Headsrl LastCommandedAfitudeControl Custom
‘Eg Custom
it AT e o D ved) = J Formal Requirements
:A;Zs‘la.ieec‘lal.m E ‘)mg_r.h;u Me_ssageoﬂ.:\dea. : Eg F.Drmal Reuuwre.ments
. m || AttitudeCantral u (] AirvehicleRequirsments
T & o oeeee | OperatarControliensiaupiink ‘IE firvehicleRequirements
(from Fuactional) e ederives n = (] Derived
[T—— E Altitude Contral S (el) +Deriveds Message0l byteS FlightMade:
byteZ (G A S adarives 3 || Messagentbytes. E 2 «Deriveds Message01 byteS FlightMode:
Messageldentifier e Altitude Contral:: = «Deriveds Message0l bytes FlightMode:
from Functional) v MissionCondel = «Deriveds Messagell.byteS FlightMode:
Messagei E T P e = «Deriveds Message01. byted. altitudeConl
byted Message0 E Messagen bytes. | 2 +«Deriveds Message0l bytet AlkitudeConl
MessageLength bytes AltitudeControl: = «Deriveds Message0l bytes . AlitudeConl
femar Firckional) Flighthdode Landing = [Functional
Message0i. E] = bt i SystemControl = «Functionals Message01 .bytel.Header1
byted. S o Dedved) TE— = «Functionals Message01 .bytel.Headerz
AitvehiclelD o = «Functional: Message0l.byte? Messagel
(fman Functional) i o RIABE Messagent. E| 2 «Functional» Message0l .byte3.Messagel
= bytes = «Functionals Messagedl . byted, Airvehide
Messagel Bl e = || Frighthtode:: = «Functional: Messagen1.bytes. FlightMod
‘F]:’:ESM o sdzitien Bk = «Functionals Messaged] . byted. AlitudeC:
el rom Derived) hiessagen E = «Functionals Message01 byte?. AirspesdC
o Fuactionsl) - — 3 byte? 5 £ NotRequred
bytes ikl «MotRequireds Messagell.byted Altitude
Flighthdode:: o Feactional) 3 =] DatalinkRequirements
aderives et
< > ‘IE DatalinkRequirements

4 Start Page *pirv¥ehicleRequirements [J Redestal
1 PrimaryLink,

Relationships ax (™ SecondaryLink
Relation Target Type In Diagram Role + J E.IonF-Funct\onaI Requirement
- - -
Diependency Messagell. bytef Altit Requirement ‘Yes < j Uj;rD;rr::ZT::ce
[ax= KR Ery L)
< >

Figure 1: EA Diagram and Project Vielvs

By far the most significant shortcoming, howeveaswhe lack of an ability to baseline a set
of requirements and identify changes between beeselFortunately, EA itself utilizes a
standard Access database and supports Visual Bagpplications (VBA) extensions. With
this knowledge, it was decided that a VBA extensiauld not be difficult to write that could
compare two databases designated as baselinesllttwsg this problem to be overcome.

Some research of requirements tools already aVaiads also undertaken to ensure that a
more complete tool was not already available. & ¥eaund that many of the tools designed
specifically for requirements analysis were complrso DOORS in that they were primarily
document based, very expensive and were a foraeignomment for the development team.
The few that had some of the graphical and desagalailities of EA were prohibitively

expensive, thus complicating the communication dgpeittempted with a necessarily limited
number of licenses.

Therefore, with a path forward identified for th@shsignificant shortcoming of EA, it was
decided that a real world trial would be neededaiafirm whether use of EA was truly a
suitable tool for requirements analysis and managgnsince a firm commitment would not
be made to this approach until after the trial s@splete, it was decided that management of
requirements changes by designated baselines weuithnaged manually for this period.
This would also allow us to determine exactly wieattures and capabilities were needed in
such an extension.

Trial

The trial itself commenced with the input of thesmmer requirements into EA. This was
done manually and so was arguably prone to hunran éfowever, this manual input by a
requirements engineer did have a silver lininghet it ensured that the engineer became
familiar with each and every requirement right tgnt at the beginning of the project. The
engineer in question would derive sub-requiremasntsecessary from the high level

requirements- such as breaking the IDD elementalhing flight mode down into the several
sub-requirements needed for each individual fligbte- that would make the mapping of
requirements and interaction logic much easier Iate It was at this time that it was noted
that a stereotype for derived requirements diderddt but EA had the ability for new
stereotypes to be defined so it was easy for threstype to be defined.

It may also be of interest to note that a furthiereotype was defined for “Not Required”
requirements. This oxymoronic stereotype alloweddhtry and tracking of requirements that
were documented as not required by VCS which alibilie requirements engineer to both
know that these requirements were not simply ow&ed during reviews and allowed the
easy addition of some of these requirements latdra project when it was discovered that
they were, after all, needed. Having been entesétllat required” first, it was easy for a
review to show this as relevant history when examgithe reason behind late-stage
requirements changes to identify the source optbblem.

Initially, the requirements were placed into speaiéquirements folders based on sub system
(e.g. payload, air vehicle, datalink, etc.) witle ttustomer functional requirements in one
folder, derived requirements in another and “Nojuieed” requirements in a third. However,
as the project progressed it was found that the Wetter placed into requirements sub-
folders within the folder for their respective uggerface. The reasoning for this was that it
allowed each dialog folder within the User Inteddolder to be self-contained such that each
dialog could be documented in isolation from ewater dialog. This became even more
important later in the project when test cases \aé3e treated in this manner because it
allowed the easy identification and documentatibnexessary regression testing based on
bounded code changes.

Project View 1x Project View o =
By d § Gy 4 B
Dieplovrnent Yiew A «Functionals YCSRequirenent, Load ~
Custaom + J Mon-Functional Requirement
?E Custarmn +- [Performance
= (] Farmal Requirements = [User Interface
‘IE Formal Requirements 'Ig User Inkerface
= [C] AirvehicleRequirements - L Air¥ehiclePanel
'IE AirvehicleRequirements lI_E AirvehiclePanel
=[] Derived =l [mirvehiclePanelFileMenu
= «Deriveds Messagedl.byteS. FlightMode: :FlyMission i Itg AirvehicleP anelFileMeny
= «Deriveds Message01.byteS. FightMade: :FlvTao =I--] FlightMadeRequirements
2 «Deriveds Message0l,byteS FlightMade: :HeadingControl 3 =Deriveds Messagell byteS, FightMods: Flyi

M= «Deriveds Messagell byteS FlightMode: :Fly T

= «Deriveds Message0l,byteS FlightMode: :LastCommanded
M= «Derived: Messagell . bytes FlightMode: :Hea

= «Deriveds Message0l.byted. AltitudeControl::LastCommandedAlitudeContral e b ightMod
2 «Deriveds Message0l.byted, AltitudeContral:: MissionConrtol LS sieriver Tessaoenl bytes Mlahtbiode ot

= «Deriveds Message0l,bytes. AltitudeControl: : OperatorControllervialplink. Y REET RUnchionalz: MessagsDLibytes: RiahtMode
= [Z] Functional L Relay

‘Ig Relay

=2 «Functional» Messagedl.bytel Headerl F3 RelaySequenceDiagram

= «Functionals Message01.bytel Header2

= «Functional» Message01.byte2 Messageldentifier

=2 «Functional» Message0l,byted MessageLength

= «Functionals Messagedl.byted . AirvehiclelD

= «Functional» Message01.byteS FlightMade

= «Functionals Message01,bytes.AltitudeControl

= «Functionals Message0l.byte? AirspeedCantral
= [Z] MotRequired

#- (] RelayControlDialog

=] RelaySetupbialog
RelaySetupbialog

= |_] RelaySetupbialogRequirements

«Functionals Messagel5.bytes.Rela
«Functionals Messagel5.byted.Rela
«Functionals Messagel5.byte?.Rela
«Functionals Messagel6.bytes. Rela

N 2 «MotRequireds Message0l bytes, AltitudeCantrol::Landing SystemCantrol «Functionals Message16.bytes.Rela
= [_] DatalinkRequirements «Functionals Message16.byte? . Rels
EE DatalinkRequirements =1 zhutton: Close
(1 Pedestal = shuttons Load to AY
4 PrimaryLink = sdialogs Relay Setup
|_] SecondaryLink. = zhlines
+ J Non-Functional Requirement = zlabel» Rx Freq:
+ j Perfarmance = zlabel> Tx Freq: 2
- R o P 0 B G| o Oy PSR
e v e >

Figure 2: Initial Requirements Organization Figure 3: Final Requirements Organizatibn

Within each requirement, it was possible to assecdlze actual customer-delivered
document in which the requirement originated amwdai$ possible for a reviewer to
launch this document from directly within EA. Thight coupling became especially
useful when the IDDs themselves started to changeglthe course of the project as the
requirements engineer could use the project vietwiwEA to methodically examine
each requirement to determine from which versiotheflDD it was taken and update it
accordingly. Although manual, this was surprisingasy for the requirements engineer
but would also be easily implemented through a \éB#ension in order to automate
such a review.

Internal requirements were also captured within &fwing cross-project concerns and
standards to be addressed within Hunter in a mahaenot only prevented divergence
of this effort from other efforts- especially theeglow effort from which it was baselined
but which was also still undergoing further devehgmt- but also allowed the
development and re-use of these requirements ey ptbjects. Again, when we later
reached the test development stage of the prafestallowed for the development of
representative if not completely re-usable tesas ¢buld be leveraged into other projects
for consistent and thorough testing.

Once the requirements entry was complete, thelkigil design was undertaken. As
with most development efforts that primarily centpon the user interface, there is a
grey area between requirements definition and hegal GUI design. Within CDL
Systems, it falls to the system engineer- as tligyiog expert between VCS capabilities
and the target system needs- to define for theldp&es what is an acceptable interface.
In this case, GUI mock-ups were constructed usig Ehherent graphical mock-up
capability. These mock-ups were constructed with@ir own individual folders and, as
mentioned earlier, the associated requirements plaoed within sub-folders of these
folders. The requirements themselves were then athpypo these diagrams by placing
the requirement objects onto the diagram and lmkiiem to the graphical widget using a
“Realization” link.

In many of the simpler implementations, this wasaass the requirements definition
needed to go in order for the developer to havicseriit information to clearly,

concisely and accurately understand the necessguiginentation. As such, at this stage,
the developer would be tasked with the developroktite specific dialog and would be
granted read privilege within the project to exaenine requirements mapping. A
requirements review would be held once the develbad had an opportunity to review
the EA diagram and then the implementation woultmm@nce. For these simple
mappings, the requirements reviews were usually sieort with only a few

clarifications needed- and captured into EA- arehttihe developer could be left to do
the coding with a high degree of confidence thairtnderstanding was accurate.

Cuztom Diagram; "RelaySetupDialog” created: 1/30/2005 22128 P modified: 1/30/2005 4:08:47 P 100%

A
Meszage1s. bytes. E Message15.bytefi. E
FelayTransmitterFrequen oy RelayReceiveFraquency hessage16.byted. E
RelayTransmittarFrequenoy
o Re!ays‘etupﬂiahi:?‘?equirementsj o He.'ayﬁ-pﬂia.'ngﬁequﬁrementsj
. il o ﬁySetupDﬁa.‘ogRequirement&)
arealizes e =
T - 7 TJerealizes hessage16. bytaf. E
i P * e L RelayReceiveFrequency
Tx Freq: cnumerichoxs - wnumericdisplays
Frag Entre.” TeFreq Report S -KRE-JaySetupD.‘aJngRequ.‘rements}
. L--uredlizen
Rx Frag: anumerichomxs enumericdisplays
Freg Entry Bi Freq Repaort
UCSRequirement.E
Load o di |-------=--=--= {13 | Lead
wredlizes
o VCSReguiements)
lightedbuth
= .u e e aredlizes. = heszage15 byte?. E
Acquire Relayfcquisitionhode
:
n g foa Aelay SetuplialogReguiements)
wredlizen
o wrealizes
L —
Messagels. byte?. E WCERequirament!

Relayfcquisitionhode Close

2 ; o VCSReguimements)
o el @y SetuplialogReguireaents)

£ >
4 AirvehicleR.eguirements RelayControlDialog *RelaysetupDialog I+

Figure 4: Simple Requirements Mapping

At this time, it should be noted that the develspgere granted only read privileges to
the EA project. This was due to the experimentalnesof this trial; it was decided that-
although EA was already used as a design tool4iilaisshould maintain the

requirements management aspect separate fromgtgndespect. This was not only to
prevent the developers from inadvertently modifyiing requirements without the
knowledge of the requirements engineers but alsdnaore likely- to prevent the
requirements engineers from inadvertently modifytimg design efforts of the

developers. The Corporate Edition of EA includesahksignation of users and passwords
along with various permissions to each particignthis was used to ensure that only
requirements and, later, test engineers were atldavenodify this project.

With many of the more complex requirements, a sengule-to-one mapping from
requirement to widget was simply not possible hieske cases, various other diagramming
tools were used to capture the various interacti@tessary. For instance, for flight
modes of a UAV, it was very useful to embed a siigram into the requirement object
itself such that the developer need only clicklmarequirement to be able to see the
series of actions and checks that must be perfoamedresult of the operator selecting
this control.

Activity Diagram: "Mezzagell byte5 Flighttode:FluTa" created: 1/30/2005 4:31:33 PM modified: 1/30/2005 4:47:44 PR 1003

A

Is a valid
uaypoint
lvaded?

Load a waypoint 2
krm directlyin
front of A%

FlyTa is
commanded

Is altitude
contral active®

Enable Altitude
Ma control

Enable
I= airspeed No Airspeed
gontrol active; control

Cornmand Fly To
mode to A%

Command set

Figure 5: EA Activity Diagram

For even more complicated interactions, sequeragraiins were used to describe the

interactions between requirements, the user areredtactors such as the vehicle, the
datalink radios or the landing system.

AN Remote AW DirectAy/ Indlirectas b4

g g g ¥ .
A A A A

A0 Remote AT Direct A Indirect A

i Request &hand-off |
-

A0 requests Remote A0 to
hand-off wehicle into relay

Transfer A4 information
Remote operator informs A0 of [T e e T
operating frequencies, A location, '
and A 1D.

Set relay 1 i
A0 sets up the relay fEay Meuendles

frequencies and wehicle |D for
relay package. Aso, sets location
for indirect wehicle if ralay
antenna is directional .

A0 command Direct Av'to Lomim=nd ﬂlcqulsmon -

establish link with Indirect A/
through the relay package

Foquire frame lock

Diract A searches on specified
freqeuncy in specified direction!
location for specified A/ 1D,

' Sends dat;
Indirect A4 is broadeasting i pEmeEed Ela = AR T
messages for Direct Av'to receive 3 §

Confirm_Acquisiti
Direct A4 confimms good signal i e 2 1gL—"§-I-°D- ST
lock on Indirect A4 wia relay o
package 1 1 L
H \ Status informati H H
Indiract A4 reports downlink to g oo o2 IR oo &
A0 via Direct & relay package g s

Request command

A0 requests Remote A0 to
enter passive receive moda only
=0 that A0 can establish control
of Indirect Av'via relay package
through Direct A

Confimm receive anl
Remate A confims entry into | BTITTIECEIE OIS bR

receive only mode to AVD f
Tum on relay tx

Y

A0 commands Direct Av'to tum
on uplink to Indirect A4
Establizh uplink

-

Direct Av'tums on relay
transmitter to allow Indirect A4 10 D bt

s : 3

Figure 6: EA Sequence Diagrdm

Often these diagrams described various relatiosdtgpween requirements so these
would be reflected by using links between theseairements describing a variety of
relationships- such as Uses, Associate, DerivesTéese links could be displayed on
the diagram itself (when both requirements wersgmewithin the same diagram) or
within a relationship view window so that, if onketbose requirements changed, it was
easy for the requirements engineer to determinelwdiher requirements, diagrams and
widget mock-ups to check to determine the impac¢hefchange.

Not unexpectedly, these more complicated requirésn@appings required more
lengthy, more detailed and more iterative requingimeeviews. However, when
compared directly to previous projects in whichisamrequirements had had to be
implemented, this was far more manageable andteesin far more accurate
implementations with far less re-work.

The problem of requirements updates and changessliekpected, rear its ugly head on
several occasions. The inability of EA to be bawaliat any point denied us the ability to
easily identify deltas. This was of particular trasion to the developers when it was a
complex implementation that they had already cotedland thus were no longer
immediately familiar with it. Requirements revisgowould be delivered by the customer,
the requirements mappings updated by the requirenesgineer but the developer could
not tell from the EA diagram what had changed. Trolwdhe end of the project, Sparx
Systems had added an ability to EA to allow cologiof the requirements object side bar
as a function of requirement type (though only i&-gefined requirement stereotypes,

not user-defined stereotypes). At this point, gguirements engineers used this feature
to identify the changes to the developers by mayngabnging the stereotype when
doing the updates so that the developer couldbyethis colouring on the diagram what
needed to be changed.

Being manual, this did encounter some problemsdsswbnnects but worked sufficiently
well to demonstrate that the use of a VBA app togare the present EA Access
database to a stored baseline and modify the egeints stereotypes accordingly would
be both possible and usable.

With the requirements mapped, the requirementsergs would now don their test
engineering hats and proceed with test developnhethis regard, EA supplies two
distinct means of developing tests: embedded t#sinreach requirements object; and
separate test case objects. Both of these methexdsexamined for suitability with the
decision eventually falling to the use of sepatast case objects. The advantage of using
this approach over the embedded tests was thiaweal test cases to test more than one
requirement simply by creating an association bekwveen the test case and all the tested
requirements and the test object itself alloweddsnition of test “titles” that

effectively defined a test plan, thus allowing mpneior test engineers to develop the
actual tests, following this “plan”. It also allodi¢he requirement-test relationship to be
more easily examined and navigated through usétarehe diagram view (by adding a
test case to the diagram), the relationship windothrough the relationship matrix
capability that allows relationships to be displhgad printed in a large matrix format
between any sets of objects. This last was orilyilabught to be quite useful- especially
for delivery to the customer- in order to provettbach requirement had an associated
test. However, as the project took on realistiprtons, it was found that the matrix
became so large that its utility was severely hasgpand use of the relationship window
became a far easier and more reliable means ofieggbat all requirements were

tested.

Figure 7: EA Test Cases

The execution of test within EA was found to bedaperior to the use of paper test
documents. The project view allows the methodigadar execution that is necessary to
ensure that all tests are performed and none @a®echi The use of electronic testing not
only allowed the lead test engineer to generagsting status at any point but also
eliminated the necessity of each tester havingve@w their individual tests to ensure
that all comments and results are legible for tia@mer. Furthermore, especially in the
initial stages of a development project, it is antommon to discover during the
execution of a test that the test itself has sdave &nd therefore requires a “red line” to
correct it. These “red lines” must be performedydn} authorized personnel who can
confirm that the test itself is in error and nattjéailing but, once it is determined that the
test must be changed, these red lines could nadobe in real time rather than requiring
to be re-visited after the testing evolution. Tisis considerable and important savings,
especially in the instances where a testing evautesults in a correction that requires
the tests to be started over again. Previouslyy awsituation presented a risk of the “red
lines” being missed due to lack of time for updateshat the second set of tests could
use incorrect tests; however, the ability to perfdnese red lines in real time ensured
that the tests were always up-to-date regardlebswffast the turn-around time between
test events.

It was important to determine a means by whichiéseengineer could clearly identify
the complete software configuration being testethdgueach test event. This was
accomplished by writing a script that queried tleesion information from every file in
the software package and wrote this to a file. Tilesin turn, was linked into the test
case objects within EA in the same manner thatefairements documents were linked
into the requirements objects, thus allowing frdkceability from the test case to the
exact software configuration being tested.

EA allows the generation of full test reports ichrtext format that can easily be opened
using Word and modified as to format, layout, tibeges, etc. for delivery to the
customer. As well, there is an ability to genetat “reports” that allow filtering such as
by date, type, status, etc. The last is espeaiaiful as the lead test engineer can filter
on all failed tests and examine them for their iotman the over-all testing effort (i.e. in
large system-level tests, the failure of some nitncal tests may not mean the failure of
a test event; the failures may simply be trackeddeolution in a later release without
interrupting the present effort). Unfortunatelyesle test reports- unlike the test
documentation- can only be printed and cannot bedsas a file itself.

It should be noted that while EA supports seveif&mrent levels and types of testing-
unit, scenario, acceptance, etc.- only the accepttsting was used in this effort. Unit
testing could potentially be useful to the devetegspecially if they linked an associated
test file and/ or test result file into the tesjemt- but of more interest to the test engineer
would be the integration or system test types whimhld be used to capture the fully
comprehensive verification testing performed on heatures when they are first
introduced. These tests are highly rigorous an@yded to test absolutely every aspect of
the new feature but often, due to the cost of nugsuch rigorous and lengthy tests,
cannot reasonably be run in their entirety evanetthe software is released. Using the
system or integration test type to capture thislle¥ testing would allow an easy
examination of the entire test history of everytdiea in the software.

One significant draw back in the EA testing capabd was the inability to “reset” the
tests between test events. This resulted in the&ses- after the initial test event-
already having the Pass or Fail status assignethadometimes made it somewhat
difficult to determine if a given test case wagalty run or not, especially when the test
events were run right after each other so datenemtia good indicator either. An ability
to have all the test cases “reset” to Not Run- pitd#y as a result of having the whole
EA project being baselined- would be of great binethe test engineer.

Lessons Learned

Over-all, the experiment using EA for requiremenenagement, test development and
testing was deemed to have been a success. Theaitwa of the Hunter air vehicle was
an extremely complex task requiring the employnoénip to 12 developers. The type of
continual verbal follow-up that had been succes$gfitilized in other, smaller projects
would not have been feasible with this many persbyet, for the most part, the initial
implementation of the software by the developegsiired less rework due to
misunderstood and/ or miscommunicated requirentbats previous efforts. While this
communication could be further enhanced (for instathrough the use of Use Cases,
supported within EA but not sufficiently understdmglthe requirements engineers for
use within this effort) the ability to clearly, agately and graphically capture the
requirements for the developers was significamtlgrioved over any other effort
undertaken.

The availability and use of such graphical toolstase and sequence diagrams allowed
even very complex requirements and interactiorigetoaptured in a manner that was
both clear and far less open to misinterpretatiam the more traditional text-based
requirements tools.

The absence of an ability to baseline and idewk#fiyas from that baseline is a critical
problem from the perspective of requirements mamage. While this effort was able to
surmount this problem through manual means, ixieenely prone to human error and,
thus, an automated means of accomplishingnthistbe developed before this tool could
be adopted for requirements management in anythomg than an experimental manner.

At least for the development of a user interfatces likely best to group the requirements
and test cases functionally with the graphicalrfiatee definition itself so as to best allow
the identification and documentation of the impafothanges and the determination of
regression testing.

The testing documentation is quite sufficient bwtould be nice to be able to save the
test reports to a file for archiving or inclusionstatus reports, etc.

Another thing that was noted while generating teses was that- while EA allowed the
association of multiple test cases with multiplguieements- sometimes the test case in
guestion only tested part of the requirement. &séhinstances it would be very useful to
assign a “weighting” to the association being mad@dicate that the requirement is not
yet fully tested. For instance, if a particulart tesse tests one of three possible states for
a specific requirement, assigning a weight of 1é®i\a allow a reviewer to immediately
identify that that requirement is not yet fully tie$ and requires another test case to be
developed to test the other 2 states. This couldugeof relationships in general- for
instance, perhaps the Realization relationship éetva widget and a requirement should
also be capable of indicating only a partial impbetation- but is most particularly true

of the test cases.

From the perspective of the CMMI effort, the apmtoed used within EA was seen as
highly desirable- so long as the ability to baselmd determine deltas from a baseline
was addressed. The traceability within EA offersnf@re capability than traditional
requirements tools, specifically in that the regments can not only trace to test and
even test cases, but even to the high level désigi. Once out of the experimental
stage, it could be expected that the EA projectldvencompass not only the
requirements, graphical design and test cases tuithvalso include the low level design
and potentially even initial code generation orfeedevelopment efforts were included
within the same project- EA is, after all, primgrd software design tool. However, it
should be noted that the inclusion of developetsraquirements/ test engineers within
the same project would be wise to include a foldeel and/ or object type permissions
capability that is not presently available everhimitthe Corporate Edition. Right now, a
user may be given read-only permission to all fdd® be allowed to write to all
diagrams but cannot be allowed write permissioretyg somediagrams andome
folders. The ability to divide access based onsaacgaesponsibility would be highly

desirable and perhaps even necessary for a tggrated EA approach to requirements
management, software design and test engineering.

Recommendations

Based on this experience with using EA for requeeta management and test
development/ testing, a set of recommendationdeayenerated as a path forward for
the integration and use of this tool into projeetelopment.

1.

Without a doubt, the single most important enhares@mecessary to justify the
use of EA for requirements management is the glidibaseline the project, to
determine a delta from that baseline and to magellanges readily apparent to
anyone examining the project

In hindsight, it is obvious that the use of Use &asvhich are already supported
by EA- would have been very useful to even furihgrove communications
between the requirements engineers and the devsldgeeir absence in this
effort was not due to any technical limitation vimtlizA but rather to the lack of
familiarity with Use Cases on the part of the regunents engineers. With
subsequent training in their development and wtiittis felt that future efforts
using EA should include the use of Use Cases tofsgaly explain the
interactions with each interface, including exceptcases.

In parallel with the Hunter effort and as partloé bver-all CMMI effort, a formal
requirements review process was implemented farirepents documents. This
review process should be modified to allow for t&éew of requirements within
the EA format rather than assume the inherentBalimature of a paper
document.

An ability to reset the status of all test casesuhbe developed- potentially as
part of baselining- to make it easier for test apgrs to ensure that no tests are
inadvertently missed

The security controls within the Corporate EditafrfEA should be enhanced to
allow diagram or folder-specific permissions focleaser so as to allow the use
of a single EA project by requirements engineasiyare developers and test
engineers for an integrated approach but withcaitrigk of inadvertent alterations
by personnel outside their area of expertise

The ability to assign a “weight” to relationshigspecially for test cases, would
be of great use in ensuring that all requiremergeViully tested, especially if a
means of automatically flagging requirements/ aigj@dth adjoining
relationships summing to less than 1.0

Conclusion

In conclusion, it can be stated that the use adrenise Architect from Sparx Systems as
a requirements management, test development amgtésol was highly successful

during the integration of the Hunter air vehicleithe VCS ground control station.
Despite this being a non-standard use of thisaadla non-standard approach to the
mapping and management of requirements, it igHattthe graphical nature of this tool
not only eased the requirements management and goitation process but also
enhanced the ability of senior requirements engaetrain more junior engineers on
the relationships between requirements, desigriesiiohg and thereby better delegate
tasks. With the advent of graphical interfacesalbmanners of management and
communication tasks, the traditional approach ththe traditional tools of requirements
management seem particularly trapped within arpalddigm that EA is very effective
at breaking.

Although there are still some significant shortdalithin EA for this task, the
architecture of EA itself allows solutions to thggeblems to be developed and
implemented and, with these solutions, will makéegrise Architect a powerful new
requirements tool that delivers all that you reguir.

' The requirements shown within this paper are sgative only and do not reflect the protocol,
capabilities or implementation of the Hunter syst@imese diagrams have been specifically constrifoted
this paper to demonstrate the points being madthéuse of EA in a requirements management rdie on

